Fingerprinting redox and ligand states in haemprotein crystal structures using resonance Raman spectroscopy.
نویسندگان
چکیده
It is crucial to assign the correct redox and ligand states to crystal structures of proteins with an active redox centre to gain valid functional information and prevent the misinterpretation of structures. Single-crystal spectroscopies, particularly when applied in situ at macromolecular crystallography beamlines, allow spectroscopic investigations of redox and ligand states and the identification of reaction intermediates in protein crystals during the collection of structural data. Single-crystal resonance Raman spectroscopy was carried out in combination with macromolecular crystallography on Swiss Light Source beamline X10SA using cytochrome c' from Alcaligenes xylosoxidans. This allowed the fingerprinting and validation of different redox and ligand states, identification of vibrational modes and identification of intermediates together with monitoring of radiation-induced changes. This combined approach provides a powerful tool to obtain complementary data and correctly assign the true oxidation and ligand state(s) in redox-protein crystals.
منابع مشابه
Photoreduction and validation of haem–ligand intermediate states in protein crystals by in situ single-crystal spectroscopy and diffraction
Powerful synergies are available from the combination of multiple methods to study proteins in the crystalline form. Spectroscopies which probe the same region of the crystal from which X-ray crystal structures are determined can give insights into redox, ligand and spin states to complement the information gained from the electron-density maps. The correct assignment of crystal structures to t...
متن کاملSynthesis, Characterization and X-Ray Crystal Structure of a Cobalt(III) Complex with 2-Bis(pyridine-2-carboxamido)-4,5-dimethylbenzene Ligand
An octahedral cobalt(III) complex, trans-[(Me2bpb)Co(bzlan)2]ClO4 (1), with H2Me2bpb = N,N’-(4,5-dimethyl-1,2-phenylene)dipicolinamide and bzlan = benzylamine, has been synthesized and characterized by elemental analyses, IR, UV-Vis, and 1H NMR spectroscopy. The structure of this complex has been determined by X-ray crystallography. The Me2bpb2– is a di-anionic tetradentate ligand furnishing a ...
متن کاملSurface Enhanced Raman Scattering of Crystal Violet with Low Concentrations Using Self-Assembled Silver and Gold-Silver Core-Shell Nanoparticles
The active substrates in surface enhanced Raman scattering (SERS) spectroscopy were prepared through self-assembly of nanoparticles on functionalized glasses. Colloidal silver nanoparticles (Ag NPs) were prepared chemically in two different sizes by reduction of AgNO3 using trisodium citrate and sodium borohydride. Gold–silver core–shell nanoparticles were also prepared to compare between the o...
متن کاملSynthesis, Characterization, and Crystal Structure Determination of Iron(III) Hetero-ligand Complex Containing Chloride, Dimethyl sulfoxide, pyridine-2, 6-dicarboxylate and Water, [Fe(Pydc)(DMSO)(H2O)Cl]
A new metal-organic compound, [Fe(Pydc)(DMSO)(H2O)Cl], (where Pydc is pyridine-2, 6-dicarboxylate and DMSO is dimethyl sulfoxide), has been synthesized and characterized by singlecrystal X-ray diffraction, TGA/DTA, IR and Raman spectroscopy. Green-yellow crystals,crystallized in the monoclinic system, space group P21/n, a = 7.2461(4) Å, b = 10.3018(4) Å, c =17.7667(10) Å, α = 90°, β = 90.014°(5...
متن کاملBiosensing Based on Surface-Enhanced Raman Spectroscopy by Using Metal Nanoparticles
Surface-enhanced Raman spectroscopy (SERS) is a promising tool in the analytical science because it provides good selectivity and sensitivity without the labeling process required by fluorescence detection. This technique consists of locating the target analyte on nanometer range of roughed Au-nanoparticles. The presence of the metal nanoparticles provides a tremendous enhancement to the result...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Acta crystallographica. Section D, Biological crystallography
دوره 70 Pt 5 شماره
صفحات -
تاریخ انتشار 2014